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Lattice-gas models for CO oxidation can exhibit a discontinuous nonequilib-
rium transition between reactive and inactive states, which disappears above a
critical CO-desorption rate. Using finite-size-scaling analysis, we demonstrate a
crossover from Ising to mean-field behavior at the critical point, with increasing
surface mobility of adsorbed CO or with decreasing system size. This behavior is
elucidated by analogy with that of equilibrium Ising-type systems with long-
range interactions.
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1. INTRODUCTION

Nonequilibrium phase transitions and pattern formation occur in a broad
variety of physical, chemical, biological, and sociological systems. (1, 2) Such
complex behavior sometimes resembles more familiar phenomena in equi-
librium systems. However, there are also some fundamental differences due
in part to the lack of free energy minimization or detailed-balance con-
straints for nonequilibrium systems. The latter feature also provides a
challenge for development of a rigorous theoretical framework. Nonetheless,



the spatial-temporal behavior of nonequilibrium transitions can be effecti-
vely studied using one of two paradigms. The first is through a set of
partial differential equations (e.g., reaction-diffusion equation for chemical
reactions), where phase transitions are related to bifurcations of the
underlying nonlinear dynamics. (1, 2) By default, criticality is governed by
mean-field (MF) behavior, although Ginzburg criteria can be developed to
characterize noise-dominated regimes. (3) The second approach utilizes
microscopic interacting particle systems of which nonequilibrium lattice-gas
models form an important subclass. For these models, one can successfully
apply techniques such as finite-size-scaling, and concepts including that of
universality classes familiar from critical phenomena in equilibrium phase
transitions. (4)

Many types of nonequilibrium phase transitions have been studied:
continuous transitions to absorbing states (4) (which are often in the univer-
sality class of directed percolation), discontinuous transitions between reactive
and inactive states, (5, 6) and order-disorder transitions, (7) all of which occur
in adsorption-desorption or reaction models; driven lattice-gases (4, 8) (where
the driving breaks detailed balance); dynamic Ising models with both spin
flip and spin exchange dynamics, but at two different temperatures leading
to interesting crossover phenomena. (9) For some of these systems, it is pos-
sible to derive rigorous reaction-diffusion equations in the hydrodynamic
limit of rapid exchange or diffusion. (6, 10)

In this paper, we consider specifically surface reaction models, which
incorporate adsorption-desorption and reaction steps, as well as surface
mobility. Our motivation is that these models not only contain the essential
ingredients to elucidate complex phenomena observed in real surface
catalysis, but also exhibit many fascinating features of the above idealized
models. On the one hand, they exhibit complex dynamics and phase tran-
sitions associated with the reaction mechanism (and perhaps with adspecies
interactions), but also surface diffusion rates provide a key parameter
which can tune behavior. In fact, while many theoretical studies have con-
sidered the regime of limited or zero mobility, it is the hydrodynamic
regime of rapid mobility that is most often realized in experiments. (6)

Our focus here is on phase transitions and associated critical phenom-
ena in models for CO oxidation on metal surfaces, behavior analogous to
that of the ferromagnetic Ising model. The central question is ‘‘how does
critical behavior depend on surface mobility,’’ anticipating that MF behav-
ior could well apply in the hydrodynamic regime, but that a crossover may
occur to non-MF behavior for lower mobility. Through precise finite-size-
scaling (FSS) studies of simulation data, we confirm this prediction and
quantify crossover behavior. We also comment on experimental realization
of crossover for CO oxidation in high-pressure nanoscale systems.
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2. REACTION MODEL: SPECIFICATION AND BEHAVIOR

We now describe our lattice-gas reaction-diffusion model, where gas
(ads) denote gas-phase (adsorbed-phase) species. The following steps are
implemented using a square lattice of adsorption sites with periodic
boundary conditions. (i) CO(gas) adsorbs on single empty sites at rate
p=pCO (chosen between 0 and 1) and desorbs with rate d. (ii) O2(gas)
adsorbs dissociatively onto a pair of diagonally adjacent empty sites at rate
pO2

=1 − pCO, provided all six neighbors are free of O(ads). This ‘‘eight-
site’’ rule reflects strong nearest-neighbor (NN) O(ads)-O(ads) repulsions.
Since O(ads) is treated as immobile, this adsorption rule ensures that
O(ads) never occupy adjacent sites. (iii) adjacent CO(ads) and O(ads) react
at rate k (set to unity here). (iv) CO(ads) hops to adjacent empty sites at
rate h. This model has also been discussed elsewhere, e.g., refs. 6 and 7.

Conventional kinetic Monte Carlo (KMC) simulations are used to
assess model behavior for finite h. Noting that mobility of CO(ads) is often
very high under ultra-high vacuum conditions, we also perform a direct
analysis of limiting behavior for h=. using a ‘‘hybrid’’ treatment: here
the distribution of O(ads) is described within a lattice-gas framework, but
one only tracks the number of CO(ads) and assumes that they are ran-
domly distributed on sites not occupied by O(ads). (6) For very large h and
low O-coverages, this is valid.

We now briefly review the steady state behavior of this model for an
infinite system. First, consider the case of finite h < .. (5, 6) For low d, one
typically finds a first-order transition at some p=pCO=pg between a reac-
tive state with low CO-coverage OhCOP (for p < pg) and an inactive state
with high OhCOP (for p > pg). The transition disappears as d increases
above some critical value dc(h). Second, consider the hybrid model with
h=.. (6, 7) Here one finds a region of bistability with both reactive and
inactive states (the discontinuous transition at p=pg for finite h corre-
sponding to the equistability point). Bistability disappears at a cusp bifur-
cation upon increasing d above some dc(.). A coherent picture for both
cases of infinite and finite h comes from the observation that decreasing h
decreases the degree of metastability or hysteresis in the system.

Next, we describe how behavior changes for finite L. For the reaction
model with finite h, the discontinuous transition in the OhCOP versus pCO

mentioned above is rounded for finite L, but becomes sharper as L increases.
The trend is analogous to behavior for the equilibrium Ising model in
finite systems. In the hybrid model with h=., there is also a smooth
transition in the OhCOP versus pCO for finite L. This reflects the feature that
for L < ., the system can make noise-induced jumps between the low
OhCOP reactive and high OhCOP inactive states, and that the relative weight
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of these states changes smoothly with pCO. This transition also becomes
sharper with increasing L, occurring at the equistability point for L Q ..
See ref. 11 for details.

Finally, to place our study in a broader context, we note that our CO
oxidation model corresponds to a modified version of the Ziff–Gulari–
Barshad (ZGB) model, (5) and its extension with desorption of CO(ads). The
key modifications in our model are inclusion of: (a) hopping of CO(ads);
(b) NN exclusion of O(ads); and (c) finite rather than infinite reaction rate.
All these features are important for realistic modeling of CO oxidation.
However, it is primarily the first feature [hopping of CO(ads)] which
impacts the critical behavior of the reactive-inactive transition studied in
this paper. Furthermore, it is clear that our conclusions about critical
behavior would apply to the ZGB model, modified to include desorption
and hopping of CO(ads). The second feature [NN exclusion of O(ads)]
results in an oxygen poisoning transition in the ZGB model (5) being
replaced by an order-disorder transition. (7) This does not affect critical
behavior of the reactive-inactive transition, with one caveat. For small h,
NN exclusion does also lead to a loss of the reactive-inactive transition (see
Section 4). The third modification to the original ZGB model is that
instead of k=., we choose k=1, i.e., the reaction rate equals the total
adsorption rate. The choice is of course somewhat arbitrary, but the basic
behavior of these models does not change varying the reaction rate from
O(1) to .. For further discussion of effects of varying k on the steady state
bifurcation diagram, see ref. 12.

3. CRITICAL POINT DETERMINATION AND FSS ANALYSIS

Unlike the Ising model, transitions in the reaction model do not
involve simple symmetry-breaking. As in the liquid-vapor phase separation
problem, one needs to locate the critical point in a two parameter space,
i.e., (p, d) for the reaction model. However here one also has the disad-
vantage that computationally efficient techniques for equilibrium systems
(e.g., histogram-reweighting and cluster algorithms) do not apply. Thus,
when using numerical techniques such as FSS, careful analysis of simula-
tion data is necessary. Below, we briefly describe our procedure.

There are several reasonable ways to define the effective transition
point p=pg

L for finite L. One natural choice is the point where the change
in the relevant order parameter (i.e., the CO coverage OhCOP) is greatest.
All choices should converge to the same value as L diverges (for fixed
d < dc), and should yield the same critical exponents in the FSS analysis
described below. For a given d < dc, we measure CO-coverage OhCOP versus
p for two different system sizes, say L and 2L. We find that a convenient
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definition of pg
L is the point where the curves cross, i.e., where OhCO(pg

L)PL=
OhCO(pg

L)P2L. The technique is similar in its underlying motivation to a
method for equilibrium first-order transitions by Borgs and Janke. (13)

After determining the transition pressure pg for each d value, one can
study the critical behavior using the usual FSS techniques. For example,
the quantity qL — LD(Oh2

COP−OhCOP
2) (where D=2 is the spatial dimen-

sion), which is related to susceptibility in equilibrium systems, is assumed
to have the following behavior

qL=Lc/nq̃Ising[(d − dc) L1/n], (1)

where q̃Ising(z) Q const as z Q 0, and qIsing(z) ’ z−c as z Q ., if the transi-
tion belongs to the Ising universality class. Here n=1 and c=7/4 are the
critical exponents for the correlation length and susceptibility respectively
(in 2D). In contrast, for the MF universality class, one has (14, 15)

qL=LD/2q̃MF[(d − dc) LD/2], (2)

where q̃MF(z) Q const as z Q 0, and qMF(z) Q z−1 as z Q .. See the
Appendix. Defining RL — q2L/qL, in either case, one has

RL(dc) Q 2 c̃, as L Q . (3)

where the size scaling exponent c̃ is D/2=1 for the MF universality class,
and c/n=7/4 for the Ising universality class.

Since one does not know the value of dc a priori, a convenient way to
determine both the critical point and exponent is by finding the crossing
point of RL(d) and R2L(d), so that

RL(dL
c )=R2L(dL

c )=2 c̃L. (4)

c̃L can be considered as the effective critical exponent for finite systems (see
Section 4). Note that in determining dL

c and c̃L, we need simulations of
systems of linear sizes L, 2L, and 4L.

Figure 1 shows RL versus d for the hybrid model. The FSS argument
above predicts that RL for different L’s will cross at (dc, Rc) where Rc=2
for MF criticality, and Rc=27/4 % 3.364 for Ising (in 2D) criticality. Figure 1
clearly shows MF behavior for system up to L=128. Note that in the limit
of L Q ., RL is a step function with RL=4 when d < dc, and RL=1 when
d > dc. (16)

Table I lists the effective critical exponent obtained using the above
procedure for the hybrid model. All estimates for c̃L are close to unity,
consistent with the prediction of MF universality class where c̃=1. (14)
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Fig. 1. Ratio, RL, of mean-square fluctuation amplitudes for systems of size 2L and L at
equistability points for the hybrid model. L ranges from 8, 16, 32, to 64 with increasing
steepness. The dotted line plot RL=2, the MF prediction.

Extrapolation to L=. assuming a 1/L2 finite size correction (consistent
with MF criticality) gives dc=0.05258(5) and pc=0.41327(5). Assuming a
1/L finite size correction for c̃L gives c̃=0.995(6). It is possible that
corrections to scaling are described by other exponents. However, our
analysis shows that the range of system sizes is large enough so that the
value of dc and the consistency with MF behavior is not dependent on the
form of the corrections. Note that MF behavior occurs despite the presence
of spatial correlations in the distribution of O(ads) due to limited mobility
of O(ads) and interactions between O(ads). (7)

Figure 2 shows RL versus d for the reaction model with finite h=1.
The crossing point appears to approach 27/4 as L increases, consistent with
the prediction of Ising universality. Limitations in analysis of larger system
sizes precludes definitive convergence of FSS results for either the hybrid
model (Fig. 1) or finite h (Fig. 2). However, comparing these cases reveals
very different behavior, and we argue that the above assignment of univer-
sality classes is quite reasonable and natural.

Table I. Effective Critical Point and Critical Expo-

nent for Fluctuations of hCO for the Hybrid Model

Obtained from Finite-Size-Scaling Analysis

L dc pc c̃L

8 0.05304(6) 0.4138(1) 0.948(2)
16 0.05275(5) 0.41343(8) 0.968(4)
32 0.05264(3) 0.41330(6) 0.981(5)
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Fig. 2. Ratio, RL, of mean-square fluctuations amplitudes for systems of size 2L and L at
equistability points for the reaction model with finite CO diffusion model h=1. L ranges from
8, 16, and 32 with increasing steepness. The dotted line shows RL=27/4, the Ising prediction.

From the slope of RL at the crossing point and the scaling form
q̃[(d − dc) Lh] in Eqs. (1) and (2) one can also estimate the exponent
related to the rounding of the critical region due to finite sizes. Using
results in Fig. 1 we find that h=1.0(1) for the largest system sizes, consis-
tent with the MF value h=D/2=1. Uncertainties in the data of Fig. 2 are
too large to obtain accurate estimate of h, but they are consistent with the
Ising value 1/n=1. In two dimensions, h can not be used to distinguish
between the MF and Ising universality class.

We note one previous study by Tomé and Dickman (17) of the ZGB
lattice-gas model (5) for CO oxidation (O2 adsorption on adjacent sites,
infinitely fast reaction, no CO diffusion) modified to include CO-desorp-
tion. They measure the shift of the critical point with system size and found
that dc(L) − dc(.) ’ L−l where l=1 consistent with results of the two-
dimensional Ising model. Indeed, using a similar method, we found that
l % 1 for h=1 and l % 2 for the hybrid model. (18) This result is consistent
with our conclusion regarding universality classes. However, care must be
taken with the interpretation of the shift exponent, l, because it is sensitive
to the boundary conditions (which were chosen to be periodic in both the
above studies) in the case of MF universality where hyperscaling is viola-
ted. (16) For example, choosing free boundary conditions (which modifies
adsorption and reaction processes near the boundaries) could lead to
modified l for the hybrid model.

4. CROSSOVER BEHAVIOR

Table II shows the variation with h of the critical point dc for the CO
poisoning transition obtained using FSS. The h=. value is taken from the
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Table II. Variation of the Critical Desorption Rate dc(h) with CO Hop Rate h. Results

Are Obtained from FSS Scaling Using System Sizes L=16, 32, and 64

h 0.5 1 2 4 10 20 .

dc(h) 0.012 0.019 0.027 0.035 0.042 0.047 0.0527

hybrid model. By analogy with equilibrium studies, discussed below and in
ref. 14, we assume that the shift of dc(h) away from the limit of h Q .

scales as 1/h (although there could be logarithmic corrections).
As an interesting aside, we note that extrapolation behavior to the

regime of small h suggests that dc(h) vanishes at h=ht % 0.2. Thus, for
small 0 < h < ht, the CO poisoning transition is continuous for d=0, and
does not exist for d > 0. This is in contrast to the ZGB model where a first-
order CO poisoning transition exists even for immobile CO. For the case
of d=0 and h < ht, our epidemic analysis (cf. ref. 4) indicates that the
transition to the absorbing (CO poisoned) state belongs to the directed
percolation universality class.

Thus, to summarize our results for the critical point in our reaction
model with k=1, we find that the critical desorption rate dc increases from
dc=0 for (small) h=ht to dc=0.0527 for h=.. In contrast, for the ZGB
model (no NN exclusion of O) with k=., modified to include CO
desorption and CO mobility, one finds that dc=0.04 (17, 19) for h=0
increasing to dc=2/3 for h=.. (12) Further refining this ZGB-type model
to incorporate k=1 (rather than k=.), one finds that dc=0.03 (20) for
h=0 increasing to dc=0.142 for h=.. (21).

Of more central interest to this paper is the variation with h of the
(effective) critical exponents. Upon increasing the CO diffusion rate, h, how
does one crossover from Ising criticality (applying for finite h > ht) to the
MF criticality of the hybrid model (which corresponds to first taking the
limit of h Q .). A related question is: for finite (possibly large) h, how does
critical behavior depend on finite system size?

In the literature on crossover studies, effective exponents are usually
defined as the slope of the log-log plot of the measured critical quantities
versus deviation from the critical point, e.g., ceff — − d ln q/d ln |d − dc |.
A different definition, which is more amenable to numerical simulations is
to fix the parameters at the critical point, while changing the system size L.
The effective (reduced) exponent can then be defined as c̃eff — d ln q/d ln L.
In principle, this derivative (or its finite difference approximation) should
be evaluated at the critical point for the infinite system, dc. In practice, dc is
unknown a priori, and estimation by extrapolation produces additional
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Fig. 3. Effective critical exponent c̃ versus h. See text for details.

errors (particularly using simulation data for limited system size). Thus
instead, one just uses dL

c obtained from the FSS analysis in Eq. (4), and
therefore c̃L also from Eq. (4) as the effective exponent.

Figure 3(a) shows c̃L versus variable 1/h for h=0.5, 1, 2, 4, and 10.
The system size is indicated in the figure. As Fig. 3(a) shows, c̃ approaches
1 as h Q ., and approaches 7/4 when h is small. This behavior can be
understood in terms of the theoretical framework presented below.

Phenomenological analysis of nonequilibrium dynamics (and more
specifically of critical phenomena) in Hamiltonian systems with noncon-
served order parameters has traditionally been formulated in terms of time-
dependent Ginzburg–Landau equations (TDGLE). (22) For multi-compo-
nent order parameter, fa, the TDGLE has the general form

“fa(x, t)
“t

=−C
dF

dfa(x, t)
+za(x, t), (5)

where za is Gaussian white noise terms. Here F is the coarse-grained free
energy functional, which for an Ising-type model (with single-component
order parameter) with interactions of range R can be written as (14, 15)

F=F dx[V(f)+1
2 |RNf|2]. (6)

The quartic potential V(f) converts from double- to single-well form with
increasing temperature through the critical point. This type of formulation
extends to nonequilibrium reaction systems characterized by a vector c of

Critical Behavior, Lattice-Gas Reaction-Diffusion Model 109



adspecies concentrations where the TDGLE are replaced by reaction-dif-
fusion equations (RDE) of the form

“c(x, t)/“t 3 − “Veff(c)/“c+N · D · Nc+z. (7)

Analogous to V, the effective potential Veff converts from double- to single-
well passing through the critical point via the bistable region. In our
problem, the diffusion tensor satisfies D 3 h (the microscopic hop rate)
except for small h. (23) Thus, comparing the RDE with TDGLE after per-
forming the functional differentiation, it is clear that h1/2 plays the role
of R. This result is reasonable if one recognizes these types of reaction-
diffusion models (with finite reaction rate and typically large diffusion
rates) exhibit a characteristic diffusion length, Ldiff, which scales like Ldiff ’

(h/K)1/2. Here, h is the microscopic hop rate, and K is some effective rate
for the overall adsorption-reaction process. See Refs. 6 and 24. As an aside,
for typical surface reactions Ldiff ’ 1mm, so surface diffusion of highly
mobile reactants provides spatial coupling over a range of 1000’s of surface
lattice constants. (24) Thus, refining the above statement, we can say that
Ldiff plays the role of R. Finally, we also note that from analysis of either
the TDGLE or the RDE for infinite systems, it is long known that fluctua-
tions dominate close enough to the critical point for spatial dimension
D < 4.

Recently, extensive studies have been performed on finite size effects in
equilibrium Ising-type systems with long-range interactions. From scaling
and renormalization procedures, (14, 15) as well as numerical simulations, (25) it
has been shown that the crossover from MF to Ising behavior in finite
L × L systems is governed by the ratio L/R2. Thus, by analogy, one expects
that the crossover for reaction-diffusion systems is governed by L/h (in 2D).
However, equilibrium and reactions-diffusion systems are quite different in
detail: the Hamiltonian formulation, which is central to analysis of the
former, does not exist for the latter; the microscopic nature of diffusion is
distinct from that of long-range interactions. Therefore, it is appropriate to
test numerically the above scaling hypothesis. In Fig. 3(b), we replot the
data in Fig. 3(a) using scaling variable L/h. Data collapse, while imperfect
for L=8, is quite good for L > 16, supporting our proposal that that L/h
is the correct size scaling variable.

Of course, it would be preferable to set the phenomenological analysis
on a more rigorous footing. In general, the strategy of extending mean-field-
type formulations to include noise via stochastic partial differential equa-
tions can be unreliable. An alternative rigorous approach is to attempt to
map the exact master equations for the model onto a stochastic field
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theory. (26) This strategy has been applied for a variety of toy reaction-dif-
fusion models, e.g., demonstrating that the introduction of diffusion can
modify the number of adsorbing states and the universality class in pair-
contact models with diffusion. (27) However, these models are quite different
from our reaction-limited monomer-dimer type models, where the utility of
the rigorous approach has yet to be demonstrated.

5. CONCLUSIONS

Catalytic CO oxidation on noble metal surfaces provides a convenient
(and important) chemical system for which lattice-gas modeling can be
used to rigorously assess criticality in a reaction-diffusion system. We have
systematically studied the role that CO diffusion plays on the criticality of
the CO poisoning transition. We find a crossover from MF criticality for
fast diffusion [which occurs despite spatial correlations in the distribution
of O(ads)], to Ising criticality for limited diffusion. The natural variable
describing this crossover is proposed based on phenomenological argu-
ments. The proposition is supported by numerical simulations.

Recent experiments on CO oxidation in nanoscale systems can probe
fluctuations and critical behavior. (28, 29) Thus, the considerations of this
paper, including the study of crossover as a function of system size, become
particularly relevant. Furthermore, the crossover behavior described in this
study may be realized physically as one makes the transition from low-
pressure to high-pressure catalysis. The latter could produce a decrease by
many orders of magnitude of the diffusion rates (relative to other rates)
that results from the higher surface coverages. (30)

APPENDIX: MEAN-FIELD MODELS AND CRITICAL BEHAVIOR

Mean-field approximations for interacting particle systems are well-
known for equilibrium systems. They can also be naturally extended to
treat non-equilibrium models. For example, one can start with the exact
hierarchical form of the master equations for a Markovian process in an
infinite system, and simply factorize multi-site configuration probabilities
in the site-approximation to obtain closed equations for the kinetics of
relevant order parameters.

The classic approach to achieve mean-field behavior for equilibrium
systems for dimensionality less then four is to incorporate long-range
interactions. For non-equilibrium adsorption-desorption or surface reac-
tion models, it is most convenient to consider the ‘‘well-stirred’’ regime,
where rates for surface hopping or diffusion of all adspecies are far larger
than all other rates (for adsorption, desorption, or reaction). Such stirring

Critical Behavior, Lattice-Gas Reaction-Diffusion Model 111



suppress fluctuations and correlations, so traditional (mean-field) chemical
kinetics applies for infinite systems.

To analyze behavior of such ‘‘well-stirred’’ reaction model in finite
systems of W=LD sites, one considers master equations for the probabil-
ities, P({Na}), for finding simultaneously Na species a on the surface. These
have the form (31–33)

d
dt

P({Na})= C
{NŒa}

W({N −

a} Q {Na}) P({N −

a})

− C
{NŒa}

W({Na} Q {N −

a}) P({Na}). (8)

The key point is that the ‘‘stirring’’ allows simple exact expressions for the
transition rates W in terms of the populations, so these equations form a
closed set.

The steady-state distribution, P st, is described in terms of an effective
potential, Veff({ha}), where ha=Na/LD denote adspecies coverages. Speci-
fically, one writes

P st({Na}) ’ exp[ − LDVeff({ha})], (9)

for large L. (31–33) The potential Veff can be obtained explicitly from the rates
W for the case of a single species or variable. (31) Determination of Veff for
several variables is substantially more complicated. (32, 11) Usually, this
analysis is performed in terms of Fokker–Planck equations obtained from
the master equations by a Kramers–Moyal-type expansion for large L.
However, direct analysis of the master equations is also possible. (32)

Equation (9) is analogous to the mean-field treatment of an equilib-
rium system resulting from neglecting the fluctuating term. Of primary
interest here are cases where the steady-states described by the mean-field
kinetics display a transition from bistability to monostability at a cusp or
pitchfork bifurcation (i.e., critical) point. The classic example of this type is
the single-variable Schlögl model. (31) There, Veff exhibits a transition from
double-well to single-well form passing through this bifurcation point. This
is analogous to an equilibrium second-order transition with a single order
parameter. Near the critical point, the effective potential have the form of

Veff(s) % ts2+us4, (10)

where t is the deviation of a temperature-like variable from the critical
point, s is the order parameter, and u > 0 is a constant. For the surface
reaction model studied in the text, one can equate roughly t with d − dc,
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and s with hCO − hc
CO. However, as in the liquid-vapor phase transition,

there is no explicit symmetry, and t and s should follows a hidden symme-
try locus in the (d, p) and (hCO, hO) plane, respectively. (See text for
details.) The finite size behavior of physical quantities near the critical
point can then be explicitly derived from Eqs. (9) and (10). (34) For example,
qL=LDOs2P for large L can be obtained by changing integration variable
to y=LD/4u1/4s. It has the form

qL(t) %
LD/2

u1/2

> dy y2 exp(−zy2 − y4)
> dy exp(−zy2 − y4)

— LD/2q̃MF(tLD/2). (11)

where z=tLD/2u−1/2. In contrast, the scaling variable in the standard finite
size scaling ansatz is tL1/n, where n is the critical exponent for the correla-
tion length. (35) Since n=1/2 for the mean-field model, the standard finite
size scaling ansatz only applies for the mean-field model for D=4. This is
due to the presence of the dangerously irrelevant variable u in the leading
term of the explicit result in (11). (16, 34)
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